\(\int \frac {(f+g x)^2 (a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}}{(d+e x)^{3/2}} \, dx\) [691]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 46, antiderivative size = 200 \[ \int \frac {(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=-\frac {8 (c d f-a e g) \left (2 a e^2 g-c d (7 e f-5 d g)\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{315 c^3 d^3 e (d+e x)^{5/2}}+\frac {8 g (c d f-a e g) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{63 c^2 d^2 e (d+e x)^{3/2}}+\frac {2 (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{9 c d (d+e x)^{5/2}} \]

[Out]

-8/315*(-a*e*g+c*d*f)*(2*a*e^2*g-c*d*(-5*d*g+7*e*f))*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/c^3/d^3/e/(e*x+d)
^(5/2)+8/63*g*(-a*e*g+c*d*f)*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/c^2/d^2/e/(e*x+d)^(3/2)+2/9*(g*x+f)^2*(a*
d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/c/d/(e*x+d)^(5/2)

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 200, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {884, 808, 662} \[ \int \frac {(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=-\frac {8 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2} (c d f-a e g) \left (2 a e^2 g-c d (7 e f-5 d g)\right )}{315 c^3 d^3 e (d+e x)^{5/2}}+\frac {8 g \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2} (c d f-a e g)}{63 c^2 d^2 e (d+e x)^{3/2}}+\frac {2 (f+g x)^2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{5/2}}{9 c d (d+e x)^{5/2}} \]

[In]

Int[((f + g*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(d + e*x)^(3/2),x]

[Out]

(-8*(c*d*f - a*e*g)*(2*a*e^2*g - c*d*(7*e*f - 5*d*g))*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(315*c^3*
d^3*e*(d + e*x)^(5/2)) + (8*g*(c*d*f - a*e*g)*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(63*c^2*d^2*e*(d
+ e*x)^(3/2)) + (2*(f + g*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2))/(9*c*d*(d + e*x)^(5/2))

Rule 662

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(p + 1))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rule 808

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[g*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 2))), x] + Dist[(m*(g*(c*d - b*e) + c*e*f) + e*(p + 1)
*(2*c*f - b*g))/(c*e*(m + 2*p + 2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g
, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[m + 2*p + 2, 0] && (NeQ[m, 2] || Eq
Q[d, 0])

Rule 884

Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(-e)*(d + e*x)^(m - 1)*(f + g*x)^n*((a + b*x + c*x^2)^(p + 1)/(c*(m - n - 1))), x] - Dist[n*((c*e*f + c*d
*g - b*e*g)/(c*e*(m - n - 1))), Int[(d + e*x)^m*(f + g*x)^(n - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b,
c, d, e, f, g, m, p}, x] && NeQ[e*f - d*g, 0] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&  !Int
egerQ[p] && EqQ[m + p, 0] && GtQ[n, 0] && NeQ[m - n - 1, 0] && (IntegerQ[2*p] || IntegerQ[n])

Rubi steps \begin{align*} \text {integral}& = \frac {2 (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{9 c d (d+e x)^{5/2}}+\frac {\left (4 \left (c d e^2 f+c d^2 e g-e \left (c d^2+a e^2\right ) g\right )\right ) \int \frac {(f+g x) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx}{9 c d e^2} \\ & = \frac {8 g (c d f-a e g) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{63 c^2 d^2 e (d+e x)^{3/2}}+\frac {2 (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{9 c d (d+e x)^{5/2}}-\frac {\left (4 (c d f-a e g) \left (2 a e^2 g-c d (7 e f-5 d g)\right )\right ) \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx}{63 c^2 d^2 e} \\ & = -\frac {8 (c d f-a e g) \left (2 a e^2 g-c d (7 e f-5 d g)\right ) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{315 c^3 d^3 e (d+e x)^{5/2}}+\frac {8 g (c d f-a e g) \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{63 c^2 d^2 e (d+e x)^{3/2}}+\frac {2 (f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{9 c d (d+e x)^{5/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.45 \[ \int \frac {(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\frac {2 ((a e+c d x) (d+e x))^{5/2} \left (8 a^2 e^2 g^2-4 a c d e g (9 f+5 g x)+c^2 d^2 \left (63 f^2+90 f g x+35 g^2 x^2\right )\right )}{315 c^3 d^3 (d+e x)^{5/2}} \]

[In]

Integrate[((f + g*x)^2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))/(d + e*x)^(3/2),x]

[Out]

(2*((a*e + c*d*x)*(d + e*x))^(5/2)*(8*a^2*e^2*g^2 - 4*a*c*d*e*g*(9*f + 5*g*x) + c^2*d^2*(63*f^2 + 90*f*g*x + 3
5*g^2*x^2)))/(315*c^3*d^3*(d + e*x)^(5/2))

Maple [A] (verified)

Time = 0.54 (sec) , antiderivative size = 108, normalized size of antiderivative = 0.54

method result size
default \(\frac {2 \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}\, \left (c d x +a e \right )^{2} \left (35 g^{2} x^{2} c^{2} d^{2}-20 a c d e \,g^{2} x +90 c^{2} d^{2} f g x +8 a^{2} e^{2} g^{2}-36 a c d e f g +63 c^{2} d^{2} f^{2}\right )}{315 \sqrt {e x +d}\, c^{3} d^{3}}\) \(108\)
gosper \(\frac {2 \left (c d x +a e \right ) \left (35 g^{2} x^{2} c^{2} d^{2}-20 a c d e \,g^{2} x +90 c^{2} d^{2} f g x +8 a^{2} e^{2} g^{2}-36 a c d e f g +63 c^{2} d^{2} f^{2}\right ) \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {3}{2}}}{315 c^{3} d^{3} \left (e x +d \right )^{\frac {3}{2}}}\) \(116\)

[In]

int((g*x+f)^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/315*((c*d*x+a*e)*(e*x+d))^(1/2)/(e*x+d)^(1/2)*(c*d*x+a*e)^2*(35*c^2*d^2*g^2*x^2-20*a*c*d*e*g^2*x+90*c^2*d^2*
f*g*x+8*a^2*e^2*g^2-36*a*c*d*e*f*g+63*c^2*d^2*f^2)/c^3/d^3

Fricas [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 230, normalized size of antiderivative = 1.15 \[ \int \frac {(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\frac {2 \, {\left (35 \, c^{4} d^{4} g^{2} x^{4} + 63 \, a^{2} c^{2} d^{2} e^{2} f^{2} - 36 \, a^{3} c d e^{3} f g + 8 \, a^{4} e^{4} g^{2} + 10 \, {\left (9 \, c^{4} d^{4} f g + 5 \, a c^{3} d^{3} e g^{2}\right )} x^{3} + 3 \, {\left (21 \, c^{4} d^{4} f^{2} + 48 \, a c^{3} d^{3} e f g + a^{2} c^{2} d^{2} e^{2} g^{2}\right )} x^{2} + 2 \, {\left (63 \, a c^{3} d^{3} e f^{2} + 9 \, a^{2} c^{2} d^{2} e^{2} f g - 2 \, a^{3} c d e^{3} g^{2}\right )} x\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{315 \, {\left (c^{3} d^{3} e x + c^{3} d^{4}\right )}} \]

[In]

integrate((g*x+f)^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x, algorithm="fricas")

[Out]

2/315*(35*c^4*d^4*g^2*x^4 + 63*a^2*c^2*d^2*e^2*f^2 - 36*a^3*c*d*e^3*f*g + 8*a^4*e^4*g^2 + 10*(9*c^4*d^4*f*g +
5*a*c^3*d^3*e*g^2)*x^3 + 3*(21*c^4*d^4*f^2 + 48*a*c^3*d^3*e*f*g + a^2*c^2*d^2*e^2*g^2)*x^2 + 2*(63*a*c^3*d^3*e
*f^2 + 9*a^2*c^2*d^2*e^2*f*g - 2*a^3*c*d*e^3*g^2)*x)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)
/(c^3*d^3*e*x + c^3*d^4)

Sympy [F]

\[ \int \frac {(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\int \frac {\left (\left (d + e x\right ) \left (a e + c d x\right )\right )^{\frac {3}{2}} \left (f + g x\right )^{2}}{\left (d + e x\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((g*x+f)**2*(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2)/(e*x+d)**(3/2),x)

[Out]

Integral(((d + e*x)*(a*e + c*d*x))**(3/2)*(f + g*x)**2/(d + e*x)**(3/2), x)

Maxima [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 192, normalized size of antiderivative = 0.96 \[ \int \frac {(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\frac {2 \, {\left (c^{2} d^{2} x^{2} + 2 \, a c d e x + a^{2} e^{2}\right )} \sqrt {c d x + a e} f^{2}}{5 \, c d} + \frac {4 \, {\left (5 \, c^{3} d^{3} x^{3} + 8 \, a c^{2} d^{2} e x^{2} + a^{2} c d e^{2} x - 2 \, a^{3} e^{3}\right )} \sqrt {c d x + a e} f g}{35 \, c^{2} d^{2}} + \frac {2 \, {\left (35 \, c^{4} d^{4} x^{4} + 50 \, a c^{3} d^{3} e x^{3} + 3 \, a^{2} c^{2} d^{2} e^{2} x^{2} - 4 \, a^{3} c d e^{3} x + 8 \, a^{4} e^{4}\right )} \sqrt {c d x + a e} g^{2}}{315 \, c^{3} d^{3}} \]

[In]

integrate((g*x+f)^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x, algorithm="maxima")

[Out]

2/5*(c^2*d^2*x^2 + 2*a*c*d*e*x + a^2*e^2)*sqrt(c*d*x + a*e)*f^2/(c*d) + 4/35*(5*c^3*d^3*x^3 + 8*a*c^2*d^2*e*x^
2 + a^2*c*d*e^2*x - 2*a^3*e^3)*sqrt(c*d*x + a*e)*f*g/(c^2*d^2) + 2/315*(35*c^4*d^4*x^4 + 50*a*c^3*d^3*e*x^3 +
3*a^2*c^2*d^2*e^2*x^2 - 4*a^3*c*d*e^3*x + 8*a^4*e^4)*sqrt(c*d*x + a*e)*g^2/(c^3*d^3)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1145 vs. \(2 (182) = 364\).

Time = 0.33 (sec) , antiderivative size = 1145, normalized size of antiderivative = 5.72 \[ \int \frac {(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate((g*x+f)^2*(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)/(e*x+d)^(3/2),x, algorithm="giac")

[Out]

2/315*(105*a*f^2*((sqrt(-c*d^2*e + a*e^3)*c*d^2 - sqrt(-c*d^2*e + a*e^3)*a*e^2)/(c*d) + ((e*x + d)*c*d*e - c*d
^2*e + a*e^3)^(3/2)/(c*d*e))*abs(e)/e + 6*c*d*f*g*((15*sqrt(-c*d^2*e + a*e^3)*c^3*d^6 - 3*sqrt(-c*d^2*e + a*e^
3)*a*c^2*d^4*e^2 - 4*sqrt(-c*d^2*e + a*e^3)*a^2*c*d^2*e^4 - 8*sqrt(-c*d^2*e + a*e^3)*a^3*e^6)/(c^3*d^3*e^2) +
(35*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*a^2*e^6 - 42*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(5/2)*a*e^3 + 1
5*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(7/2))/(c^3*d^3*e^5))*abs(e)/e^2 + 3*a*g^2*((15*sqrt(-c*d^2*e + a*e^3)*c
^3*d^6 - 3*sqrt(-c*d^2*e + a*e^3)*a*c^2*d^4*e^2 - 4*sqrt(-c*d^2*e + a*e^3)*a^2*c*d^2*e^4 - 8*sqrt(-c*d^2*e + a
*e^3)*a^3*e^6)/(c^3*d^3*e^2) + (35*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*a^2*e^6 - 42*((e*x + d)*c*d*e - c
*d^2*e + a*e^3)^(5/2)*a*e^3 + 15*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(7/2))/(c^3*d^3*e^5))*abs(e)/e - c*d*g^2*
((35*sqrt(-c*d^2*e + a*e^3)*c^4*d^8 - 5*sqrt(-c*d^2*e + a*e^3)*a*c^3*d^6*e^2 - 6*sqrt(-c*d^2*e + a*e^3)*a^2*c^
2*d^4*e^4 - 8*sqrt(-c*d^2*e + a*e^3)*a^3*c*d^2*e^6 - 16*sqrt(-c*d^2*e + a*e^3)*a^4*e^8)/(c^4*d^4*e^3) + (105*(
(e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*a^3*e^9 - 189*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(5/2)*a^2*e^6 + 135
*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(7/2)*a*e^3 - 35*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(9/2))/(c^4*d^4*e^7)
)*abs(e)/e^2 - 21*c*d*f^2*((3*sqrt(-c*d^2*e + a*e^3)*c^2*d^4 - sqrt(-c*d^2*e + a*e^3)*a*c*d^2*e^2 - 2*sqrt(-c*
d^2*e + a*e^3)*a^2*e^4)/(c^2*d^2) + (5*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*a*e^3 - 3*((e*x + d)*c*d*e -
c*d^2*e + a*e^3)^(5/2))/(c^2*d^2*e^2))*abs(e)/e^3 - 42*a*f*g*((3*sqrt(-c*d^2*e + a*e^3)*c^2*d^4 - sqrt(-c*d^2*
e + a*e^3)*a*c*d^2*e^2 - 2*sqrt(-c*d^2*e + a*e^3)*a^2*e^4)/(c^2*d^2) + (5*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^
(3/2)*a*e^3 - 3*((e*x + d)*c*d*e - c*d^2*e + a*e^3)^(5/2))/(c^2*d^2*e^2))*abs(e)/e^2)/e

Mupad [B] (verification not implemented)

Time = 12.13 (sec) , antiderivative size = 206, normalized size of antiderivative = 1.03 \[ \int \frac {(f+g x)^2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}}{(d+e x)^{3/2}} \, dx=\frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}\,\left (\frac {4\,g\,x^3\,\left (5\,a\,e\,g+9\,c\,d\,f\right )}{63}+\frac {16\,a^4\,e^4\,g^2-72\,a^3\,c\,d\,e^3\,f\,g+126\,a^2\,c^2\,d^2\,e^2\,f^2}{315\,c^3\,d^3}+\frac {x^2\,\left (6\,a^2\,c^2\,d^2\,e^2\,g^2+288\,a\,c^3\,d^3\,e\,f\,g+126\,c^4\,d^4\,f^2\right )}{315\,c^3\,d^3}+\frac {2\,c\,d\,g^2\,x^4}{9}+\frac {4\,a\,e\,x\,\left (-2\,a^2\,e^2\,g^2+9\,a\,c\,d\,e\,f\,g+63\,c^2\,d^2\,f^2\right )}{315\,c^2\,d^2}\right )}{\sqrt {d+e\,x}} \]

[In]

int(((f + g*x)^2*(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(3/2))/(d + e*x)^(3/2),x)

[Out]

((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)*((4*g*x^3*(5*a*e*g + 9*c*d*f))/63 + (16*a^4*e^4*g^2 + 126*a^2*c
^2*d^2*e^2*f^2 - 72*a^3*c*d*e^3*f*g)/(315*c^3*d^3) + (x^2*(126*c^4*d^4*f^2 + 6*a^2*c^2*d^2*e^2*g^2 + 288*a*c^3
*d^3*e*f*g))/(315*c^3*d^3) + (2*c*d*g^2*x^4)/9 + (4*a*e*x*(63*c^2*d^2*f^2 - 2*a^2*e^2*g^2 + 9*a*c*d*e*f*g))/(3
15*c^2*d^2)))/(d + e*x)^(1/2)